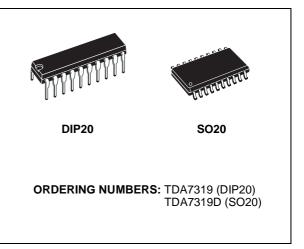
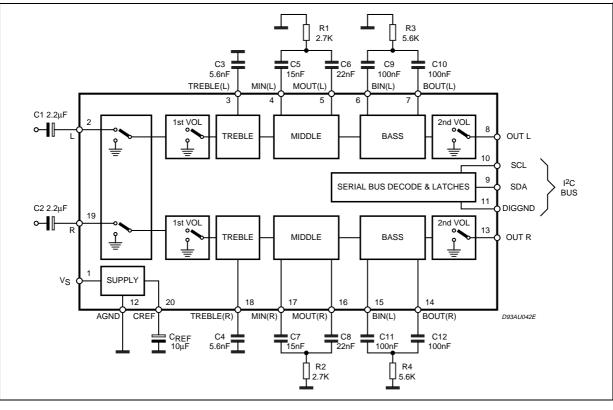


3 BAND DIGITAL CONTROLLED AUDIO PROCESSOR

- ONE STEREO INPUT
- ONE STEREO OUTPUT
- TWO INDEPENDENT VOLUME CONTROL IN 1.0dB STEPS
- TREBLE, MIDDLE AND BASS CONTROL IN 1.0dB STEPS
- ALL FUNCTIONS PROGRAMMABLE VIA SE-RIAL I² CBUS


DESCRIPTION

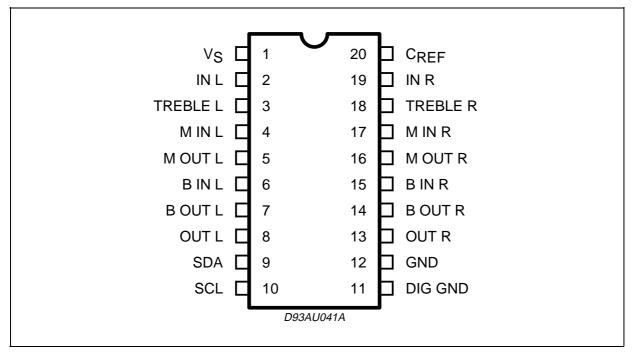
The TDA7319 is a volume and tone (bass , middle and treble) processor for quality audio application in car radio and Hi-Fi system.


Control is accomplished by serial I²C bus microprocessor interface.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.

BLOCK DIAGRAM AND APPLICATION CIRCUIT

Thanks to the used BIPOLAR/MOS Technology, Low Distortion, Low Noise and Low Dc stepping are obtained.



May 1995

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
Tamb	Operating Ambient Temperature	-40 to 85	°C
T _{stg}	Storage Temperature Range	-55 to 150	°C

PIN CONNECTION

THERMAL DATA

Symbol	Parameter	DIP20	SO20	Unit
R _{th j-amb}	Thermal Resistance Junction-pins	150	150	°C/W

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10.5	V
V _{CL}	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.08	%
S/N	Signal to Noise Ratio		106		dB
Sc	Channel Separation f = 1KHz		100		dB
	1st and 2nd Volume Control 1dB step	-47		0	dB
	Bass, Middle and Treble Control 1dB step	-14		+14	dB
	Mute Attenuation		100		dB

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT						
Rin	Input Resistance		35	50	65	KΩ
1st VOLU	ME CONTROL					
CRANGE	Control Range		45	47	49	dB
AVMAX	Maximum Attenuation		45	47	49	dB
Astep	Step Resolution		0.5	1.0	1.5	dB
E _A	Attenuation Set Error	G = 0 to -24dB	-1.0		1.0	dB
		G = -24 to -47dB	-1.5		1.5	dB
Et	Tracking Error	G = 0 to -24dB			1	dB
	Ū.	G = 24 to -47dB			2	dB
A _{mute}	Mute Attenuation		80	100		dB
V _{DC}	DC Steps	Adiacent Attenuation Steps		0	3	mV
		From 0dB to A _{VMAX}		0.5	5	mV
2nd VOLU	ME CONTROL					
CRANGE	Control Range		45	47	49	dB
AVMAX	Maximum Attenuation		45	47	49	dB
A _{step}	Step Resolution		0.5	1.0	1.5	dB
EA	Attenuation Set Error	G = 0 to -24dB	-1.0		1.0	dB
		G = -24 to -47dB	-1.5		1.5	dB
Et	Tracking Error	G = 0 to -24dB			1	dB
·	5	G = 24 to -47dB			2	dB
Amute	Mute Attenuation		80	100		dB
V _{DC}	DC Steps	Adiacent Attenuation Steps		0	3	mV
		From 0dB to A _{VMAX}		0.5	5	mV
BASS						
Rb	Internal Feedback Resistance		32	44	56	KΩ
	Control Range		±11.5	±14	±16	dB
Astep	Step Resolution		0.5	1	1.5	dB
	Internal Foodbook Desistance		10	25	22	KO
R _b	Internal Feedback Resistance		18	25	32	KΩ
	Control Range		±11.5	±14 1	±16	dB
A _{step}	Step Resolution		0.5	1	1.5	dB
TREBLE						
CRANGE	Control Range		±13	±14	±15	dB
A _{step}	Step Resolution		0.5	1	1.5	dB
SUPPLY						
Vs	Supply Voltage (note1)		6	9	10.5	V
ls	Supply Current		4	7	10	mA
SVR	Ripple Rejection		60	90		dB
AUDIO OU	JTPUT					
V _{clip}	Clipping Level	d = 0.3%	2	2.6		Vrms
R _{OI}	Output Load Resistance		2	-		KΩ
R ₀	Output Impedance		100	180	300	Ω
Ş		+				V

ELECTRICAL CHARACTERISTICS ($V_S = 9V$; $R_L = 10K\Omega$; f = 1KHz; all control = flat (G = 0); $T_{amb} = 25^{\circ}C$ Refer to the test circuit, unless otherwise specified.)

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
GENERAL						
e _{NO}	Output Noise	All Gains 0dB (B = 20 to 20kHz flat)		5	15	μV
Et	Total Tracking Error	Av = 0 to $-24dB$		0	1	dB
		A _V = -24 to -47dB		0	2	dB
S/N	Signal to Noise Ratio	All Gains = 0dB; $V_0 = 1V_{ms}$		106		dB
Sc	Channel Separation		80	100		dB
d	Distortion	$A_V = 0$; $V_{in} = 1V_{rms}$		0.01	0.08	%
BUS INPU	TS					
V _{il}	Input Low Voltage				1	V
V _{ih}	Input High Voltage		3			V
l _{in}	Input Current	Vin = 0.4V	-5		5	μA
Vo	Output Voltage SDA Acknowledge	I _O = 1.6mA		0.4	0.8	V

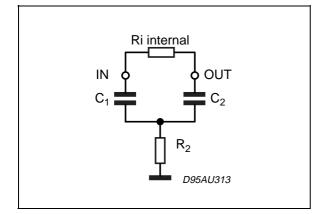
Note 1: the device is functionally good at Vs = 5V. A step down, on V_S, to 4V does't reset the device.

APPLICATION SUGGESTIONS

The first and the last stages are volume control blocks. The control range is 0 to -47dB (mute) with a 1dB step.

The very high resolution allows the implementation of systems free from any noisy acoustical effect. The TDA7319 audioprocessor provides 3 bands tones control.

Bass, Middle Stages


The Bass and the middle cells have the same structure.

The Bass cell has an internal resistor $Ri = 44K\Omega$ typical.

The Middle cell has an internal resistor $Ri = 25K\Omega$ typical.

Several filter types can be implemented, connecting external components to the Bass/Middle IN and OUT pins.

Figure 1.

The fig.1 refers to basic <u>T Type Bandpass Filter</u> starting from the filter component values (R1 internal and R2,C1,C2 external) the centre frequency Fc, the gain Av at max. boost and the filter Q factor are computed as follows:

$$F_{C} = \frac{1}{2 \cdot \pi \cdot \sqrt{Ri, R2, C1, C2}}$$
$$A_{V} = \frac{R2 C2 + R2 C1 + Ri C1}{R2 C1 + R2 C2}$$

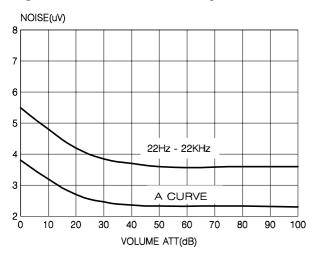
$$Q = \frac{\sqrt{Ri R2 + C1 C2}}{R2 C1 + R2 C2}$$

Viceversa, once Fc, Av, and Ri internal value are fixed, the external components values will be:

$$C1 = \frac{A_V - 1}{2 \cdot \pi \cdot R_i \cdot Q} \qquad C2 = \frac{Q^2 \cdot C1}{A_V - 1 Q^2}$$
$$R2 = \frac{A_V - 1 - Q^2}{2 \cdot \pi \cdot C1 \cdot F_C \cdot (A_V - 1) \cdot Q}$$

Treble Stage

The treble stage is a high pass filter whose time constant is fixed by an internal resistor ($25K\Omega$ typical) and an external capacitor connected between treble pins and ground


Typical responses are reported in Figg. 10 to 13.

CREF

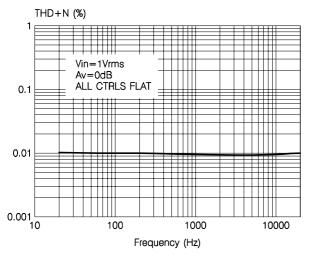

The suggested 10μ F reference capacitor (CREF) value can be reduced to 4.7μ F if the application requires faster power ON.



Figure 2: Noise vs. volume setting

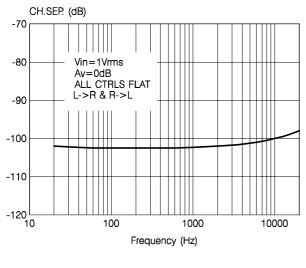
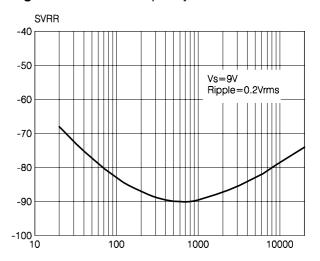
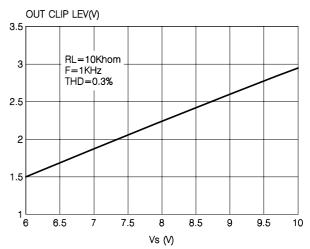
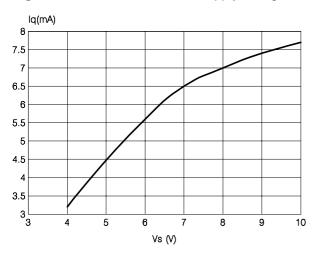
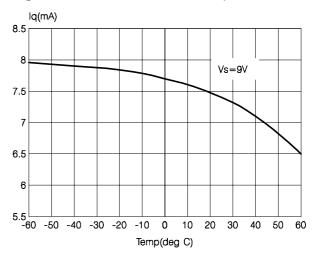




Figure 3: SVRR vs. frequency


Figure 7: Output clip level vs. Supply voltage

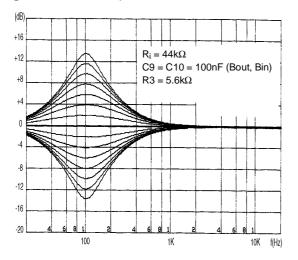


Figure 8: Quiescent current vs. supply voltage

Figure 10: Bass response

Figure 12: Treble response

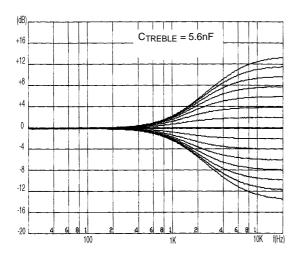


Figure 11: Middle response

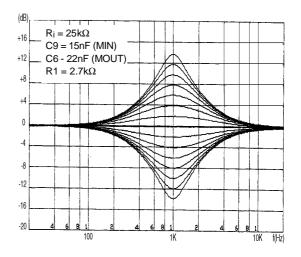
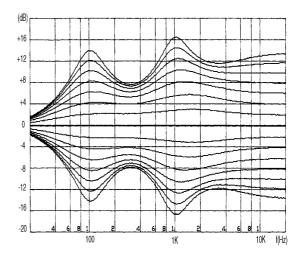



Figure 13: Typical tone response

SGS-THOMSON

<u>ل</u>رك

I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7319 and viceversa takes place thru the 2 wires I^2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externally connected).

Data Validity

As shown in fig. 3, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

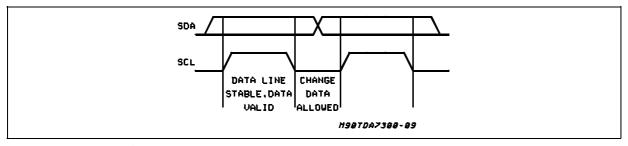
As shown in fig.4 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

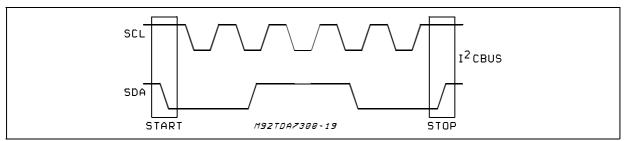
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

Data Validity on the I²CBUS

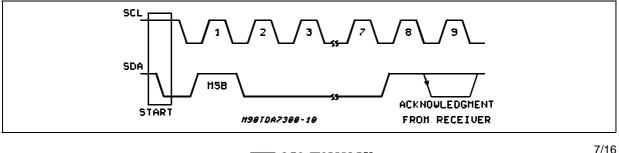
Acknowledge


The master (µP) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 5). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer

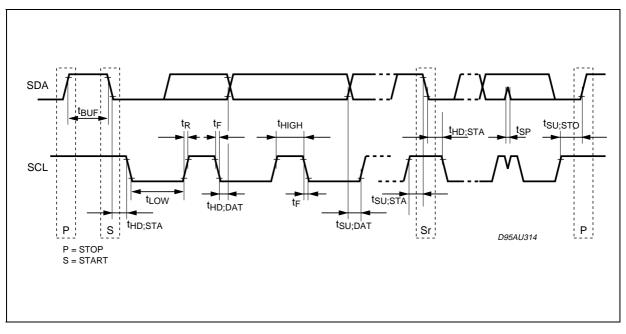

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the µP can use a simplier transmission: simply it generates the 9th clock pulse without checking the slave acknowledging, and then sends the new data.


This approach of course is less protected from misworking and decreases the noise immunity.

Timing Diagram of I²CBUS

Acknowledge on the I²CBUS



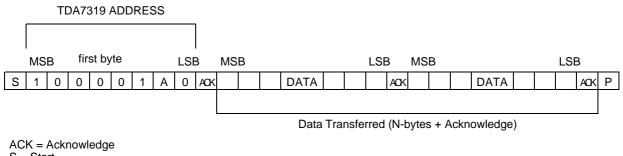
SDA, SCL I²CBUS TIMING

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{SCL}	SCL clock frequency	0		400	kHz
t _{BUF}	Bus free time between a STOP and START condition	1.3			μs
thd:sta	Hold time (repeated) START condition. After this period, the first clock pulse is generated	0.6			μs
t _{LOW}	LOW period of the SCL clock	1.3			μs
thigh	HIGH period of the SCL clock	0.6			μs
t _{SU:STA}	Set-up time for a repeated START condition	0.6			μs
t _{HD:DA}	Data hold time	0.300			μs
tsu:dat	Data set-up time	100			ns
t _R	Rise time of both SDA and SCL signals	20		300	ns (*)
t _F	Fall time of both SDA and SCL signals	20		300	ns (*)
t _{SU:STO}	Set-up time for STOP condition	0.6			μs

All values referred to $V_{\text{IH}\,\text{min.}}$ and $V_{\text{IL}\,\text{max.}}$ levels (*) Must be guaranteed by the I^2C BUS master.

Definition of timing on the I²C-bus

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7319

address (the 8th bit of the byte must be 0). The TDA7319 must always acknowledge at the end of each transmitted byte.

- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

ACK = Acknowledge S = Start P = Stop MAX CLOCK SPEED 400kbits/s

SOFTWARE SPECIFICATION

Chip address

1 MSB	0	0	0	0	1	1	0 LSB
----------	---	---	---	---	---	---	----------

FUNCTION CODES

	MSB	F6	F5	F4	F3	F2	F1	LSB
1st VOLUME	0	F6	F5	F4	F3	F2	F1	0
2nd VOLUME	0	F6	F5	F4	F3	F2	F1	1
TREBLE	1	0	0	F4	F3	F2	F1	F0
MIDDLE	1	0	1	F4	F3	F2	F1	F0
BASS	1	1	0	F4	F3	F2	F1	F0
MUTMUX	1	1	1	F4	F3	F2	F1	F0

POWER ON RESET:

1st volume = 2nd volume = Mute Treble = Middle = Bass = -14dB Mutmux = Active Input

1st VOLUME CODES

MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
0							0	step 1dB
				0	0	0		0dB
				0	0	1		-1dB
				0	1	0		-2dB
				0	1	1		-3dB
				1	0	0		-4dB
				1	0	1		-5dB
				1	1	0		-6dB
				1	1	1		-7dB
0							0	step 8dB
	0	0	0					0dB
	0	0	1					-8dB
	0	1	0					-16dB
	0	1	1					-24dB
	1	0	0					-32dB
	1	0	1					-40dB
	1	1	1					MUTE

2nd VOLUME CODES

MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
0							1	step 1dB
				0	0	0		0dB
				0	0	1		-1dB
				0	1	0		-2dB
				0	1	1		-3dB
				1	0	0		-4dB
				1	0	1		-5dB
				1	1	0		-6dB
				1	1	1		-7dB
0							1	step 8dB
	0	0	0					0dB
	0	0	1					-8dB
	0	1	0					-16dB
	0	1	1					-24dB
	1	0	0					-32dB
	1	0	1					-40dB
	1	1	1					MUTE

TREBLE CODES

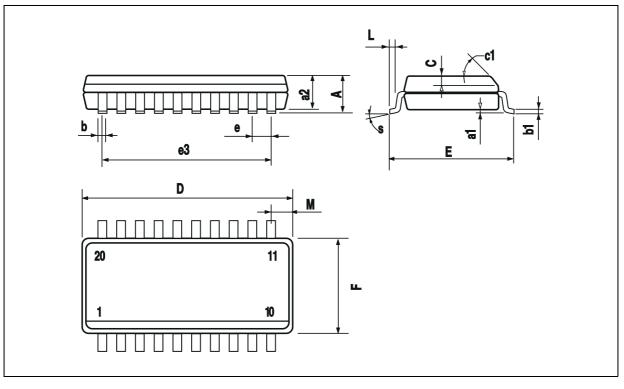
MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
1	0	0						TREBLE BOOST
			0	0	0	0	0	0dB
			0	0	0	0	1	1dB
			0	0	0	1	0	2dB
			0	0	0	1	1	3dB
			0	0	1	0	0	4dB
			0	0	1	0	1	5dB
			0	0	1	1	0	6dB
			0	0	1	1	1	7dB
			0	1	0	0	0	8dB
			0	1	0	0	1	9dB
			0	1	0	1	0	10dB
			0	1	0	1	1	11dB
			0	1	1	0	0	12dB
			0	1	1	0	1	13dB
			0	1	1	1	0	14dB
			0	1	1	1	1	14dB
1	0	0						TREBLE CUT
			1	0	0	0	0	0dB
			1	0	0	0	1	-1dB
			1	0	0	1	0	-2dB
			1	0	0	1	1	-3dB
			1	0	1	0	0	-4dB
			1	0	1	0	1	-5dB
			1	0	1	1	0	-6dB
			1	0	1	1	1	-7dB
			1	1	0	0	0	-8dB
			1	1	0	0	1	-9dB
			1	1	0	1	0	-10dB
			1	1	0	1	1	-11dB
			1	1	1	0	0	-12dB
			1	1	1	0	1	-13dB
			1	1	1	1	0	-14dB
			1	1	1	1	1	-14dB

MIDDLE CODES

MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
1	0	1						MIDDLE BOOST
			0	0	0	0	0	0dB
			0	0	0	0	1	1dB
			0	0	0	1	0	2dB
			0	0	0	1	1	3dB
			0	0	1	0	0	4dB
			0	0	1	0	1	5dB
			0	0	1	1	0	6dB
			0	0	1	1	1	7dB
			0	1	0	0	0	8dB
			0	1	0	0	1	9dB
			0	1	0	1	0	10dB
			0	1	0	1	1	11dB
			0	1	1	0	0	12dB
			0	1	1	0	1	13dB
			0	1	1	1	0	14dB
			0	1	1	1	1	14dB
1	0	1						MIDDLE CUT
			1	0	0	0	0	0dB
			1	0	0	0	1	-1dB
			1	0	0	1	0	-2dB
			1	0	0	1	1	-3dB
			1	0	1	0	0	-4dB
			1	0	1	0	1	-5dB
			1	0	1	1	0	-6dB
			1	0	1	1	1	-7dB
			1	1	0	0	0	-8dB
			1	1	0	0	1	-9dB
			1	1	0	1	0	-10dB
			1	1	0	1	1	-11dB
			1	1	1	0	0	-12dB
			1	1	1	0	1	-13dB
			1	1	1	1	0	-14dB
			1	1	1	1	1	-14dB

BASS CODES

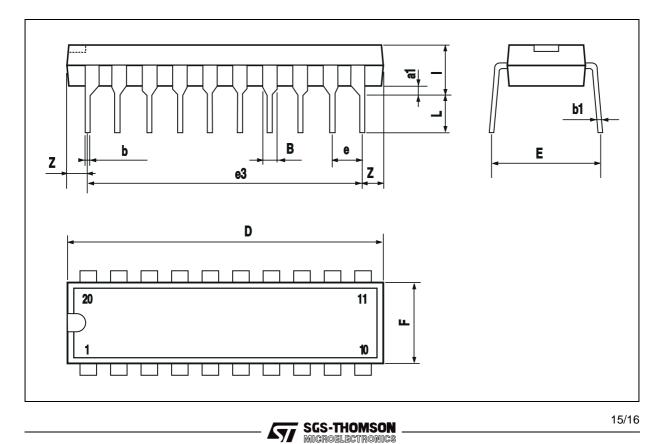
MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
1	1	0						BASS BOOST
			0	0	0	0	0	0dB
			0	0	0	0	1	1dB
			0	0	0	1	0	2dB
			0	0	0	1	1	3dB
			0	0	1	0	0	4dB
			0	0	1	0	1	5dB
			0	0	1	1	0	6dB
			0	0	1	1	1	7dB
			0	1	0	0	0	8dB
			0	1	0	0	1	9dB
			0	1	0	1	0	10dB
			0	1	0	1	1	11dB
			0	1	1	0	0	12dB
			0	1	1	0	1	13dB
			0	1	1	1	0	14dB
			0	1	1	1	1	14dB
1	1	0						BASS CUT
			1	0	0	0	0	0dB
			1	0	0	0	1	-1dB
			1	0	0	1	0	-2dB
			1	0	0	1	1	-3dB
			1	0	1	0	0	-4dB
			1	0	1	0	1	-5dB
			1	0	1	1	0	-6dB
			1	0	1	1	1	-7dB
			1	1	0	0	0	-8dB
			1	1	0	0	1	-9dB
			1	1	0	1	0	-10dB
			1	1	0	1	1	-11dB
			1	1	1	0	0	-12dB
			1	1	1	0	1	-13dB
			1	1	1	1	0	-14dB
			1	1	1	1	1	-14dB


MUTMUX CODES

MSB	F6	F5	F4	F3	F2	F1	LSB	FUNCTION
1	1	1						INPUTS
			Х	Х	Х	0	0	NOT ALLOWED
			Х	Х	Х	0	1	NOT ALLOWED
			Х	Х	Х	1	0	NOT ALLOWED
			Х	1	1	1	1	IN

SO20 PACKAGE MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.3	0.004		0.012		
a2			2.45			0.096		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.013		
С		0.5			0.020			
c1	45 (typ.)							
D	12.6		13.0	0.496		0.512		
E	10		10.65	0.394		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.4		7.6	0.291		0.299		
L	0.5		1.27	0.020		0.050		
М			0.75			0.030		
S	8 (max.)							



SGS-THOMSON MICROELECTRONICS

14/16

DIP20 PACKAGE MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

16/16